一文搞定函數的基本問題
還在為函數的增減性、區(qū)間取值而煩惱嗎?三角函數、指數函數、對數函數等等函數頭蒙圈了嗎?
一、函數的單調性
1.增函數和減函數
一般地,設函數f(x)的定義域為I:
如果對于屬于I內某個區(qū)間上的任意兩個自變量的值x1、x2,當x1
如果對于屬于I內某個區(qū)間上的任意兩個自變量的值x1、x2,當x1
2.單調區(qū)間
單調區(qū)間是指函數在某一區(qū)間內的函數值Y,隨自變量X增大而增大(或減小)恒成立。如果函數y=f(x)在某個區(qū)間是增函數或減函數。那么就說函數y=f(x)在這一區(qū)間具有(嚴格的)單調性,這一區(qū)間叫做y= f(x)的單調區(qū)間。
二、三角函數
1.三角函數
三角函數的定義域是研究其他一切性質的前提,求三角函數的定義域實際上就是解最簡單的三角不等式,通??捎萌呛瘮档膱D像或三角函數線來求解,注意數形結合思想的應用,如何運用三角函數的圖像解決問題能夠幫助對數形結合思想的掌握。
2.三角函數誘導公式
公式一: 設α為任意角,終邊相同的角的同一三角函數的值相等運用同角三角函數的基本關系式求值
公式二: 設α為任意角,π+α的三角函數值與α的三角函數值之間的關系:
sin(π+α)=—sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三: 任意角α與-α的三角函數值之間的關系:
sin(-α)=-sinα
3.銳角三角函數
在△ABC中,∠C為直角,∠A和∠B是銳角
(1)我們把銳角∠A的對邊與斜邊的比叫做∠A的正弦,記作sinA...
三、指數函數
1.指數函數的定義
指數函數的一般形式為y=a^x(a>0且≠1) (x∈R).
2.指數函數的性質
(1)曲線沿x軸方向向左無限延展〈=〉函數的定義域為(-∞,+∞)
(2)曲線在x軸上方,而且向左或向右隨著x值的減小或增大無限靠近X軸(x軸是曲線的漸近線)〈=〉函數的值域為(0,+∞)
四、對數與對數函數
1.定義
對數:一般地,如果a(a大于0,且a不等于1)的b次冪等于N,那么數b叫做以a為底N的對數,記作log aN=b,讀作以a為底N的對數,其中a叫做對數的底數,N叫做真數。
對數函數:一般地,函數y=log(a)X,(其中a是常數,a>0且a不等于1)叫做對數函數,它實際上就是指數函數的反函數,因此指數函數里對于a的規(guī)定,同樣適用于對數函數。
2.方法點撥
在解決函數的綜合性問題時,要根據題目的具體情況把問題分解為若干小問題一次解決,然后再整合解決的結果,這也是分類與整合思想的一個重要方面。
五、冪函數
1.定義
形如y=x^a(a為常數)的函數,即以底數為自變量 冪為因變量,指數為常量的函數稱為冪函數。
2.性質
冪函數不經過第三象限,如果該函數的指數的分子n是偶數,而分母m是任意整數,則y>0,圖像在第一;二象限.這時(-1)^p的指數p的奇偶性無關.
如果函數的指數的分母m是偶數,而分子n是任意整數,則x>0(或x>=0);y>0(或y>=0),圖像在第一象限.與p的奇偶性關系不大
推薦閱讀:
2016高考資訊 | 2016藝考 | 2016自主招生 | 2016中國大學排行榜 | 最美?;ūP點
1月高考關注:特殊類型招生與港澳高校內地招生
中國校友會網:2016年中國各類型大學排行榜
2016年全國高考考試大綱權威解讀(共9科)
25所高校招辦解讀2016年藝術類專業(yè)招生政策
調查稱2015年高校畢業(yè)生月起薪平均為4187元
武漢大學女神黃燦燦 清純扮相引人眼球(組圖)
關于本條高考新聞信息,來源于網絡,最新最全高考政策新聞請關注中大網校高考頻道
(責任編輯:)